27 research outputs found

    Secrecy Results for Compound Wiretap Channels

    Full text link
    We derive a lower bound on the secrecy capacity of the compound wiretap channel with channel state information at the transmitter which matches the general upper bound on the secrecy capacity of general compound wiretap channels given by Liang et al. and thus establishing a full coding theorem in this case. We achieve this with a stronger secrecy criterion and the maximum error probability criterion, and with a decoder that is robust against the effect of randomisation in the encoding. This relieves us from the need of decoding the randomisation parameter which is in general not possible within this model. Moreover we prove a lower bound on the secrecy capacity of the compound wiretap channel without channel state information and derive a multi-letter expression for the capacity in this communication scenario.Comment: 25 pages, 1 figure. Accepted for publication in the journal "Problems of Information Transmission". Some of the results were presented at the ITW 2011 Paraty [arXiv:1103.0135] and published in the conference paper available at the IEEE Xplor

    Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding

    Full text link
    We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.Comment: 45 pages, no figures. Section 6.2 rewritten due to an error in equation (72) of the old version. Added table of contents, added section 'Conclusions and further remarks'. Accepted for publication in 'Communications in Mathematical Physics

    Typical support and Sanov large deviations of correlated states

    Get PDF
    Discrete stationary classical processes as well as quantum lattice states are asymptotically confined to their respective typical support, the exponential growth rate of which is given by the (maximal ergodic) entropy. In the iid case the distinguishability of typical supports can be asymptotically specified by means of the relative entropy, according to Sanov's theorem. We give an extension to the correlated case, referring to the newly introduced class of HP-states.Comment: 29 pages, no figures, references adde

    The invalidity of a strong capacity for a quantum channel with memory

    Get PDF
    The strong capacity of a particular channel can be interpreted as a sharp limit on the amount of information which can be transmitted reliably over that channel. To evaluate the strong capacity of a particular channel one must prove both the direct part of the channel coding theorem and the strong converse for the channel. Here we consider the strong converse theorem for the periodic quantum channel and show some rather surprising results. We first show that the strong converse does not hold in general for this channel and therefore the channel does not have a strong capacity. Instead, we find that there is a scale of capacities corresponding to error probabilities between integer multiples of the inverse of the periodicity of the channel. A similar scale also exists for the random channel.Comment: 7 pages, double column. Comments welcome. Repeated equation removed and one reference adde

    Quantum capacity under adversarial quantum noise: arbitrarily varying quantum channels

    Full text link
    We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In he final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.Comment: 49 pages, no figures, final version of our papers arXiv:1010.0418v2 and arXiv:1010.0418. Published "Online First" in Communications in Mathematical Physics, 201

    Private information via the Unruh effect

    Full text link
    In a relativistic theory of quantum information, the possible presence of horizons is a complicating feature placing restrictions on the transmission and retrieval of information. We consider two inertial participants communicating via a noiseless qubit channel in the presence of a uniformly accelerated eavesdropper. Owing to the Unruh effect, the eavesdropper's view of any encoded information is noisy, a feature the two inertial participants can exploit to achieve perfectly secure quantum communication. We show that the associated private quantum capacity is equal to the entanglement-assisted quantum capacity for the channel to the eavesdropper's environment, which we evaluate for all accelerations.Comment: 5 pages. v2: footnote deleted and typos corrected. v3: major revision. New capacity (single-letter!) theorem and implicit assumption lifte

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/

    Coding Theorem for a Class of Quantum Channels with Long-Term Memory

    Get PDF
    In this paper we consider the transmission of classical information through a class of quantum channels with long-term memory, which are given by convex combinations of product channels. Hence, the memory of such channels is given by a Markov chain which is aperiodic but not irreducible. We prove the coding theorem and weak converse for this class of channels. The main techniques that we employ, are a quantum version of Feinstein's Fundamental Lemma and a generalization of Helstrom's Theorem.Comment: Some typos correcte

    Partitioned trace distances

    Full text link
    New quantum distance is introduced as a half-sum of several singular values of difference between two density operators. This is, up to factor, the metric induced by so-called Ky Fan norm. The partitioned trace distances enjoy similar properties to the standard trace distance, including the unitary invariance, the strong convexity and the close relations to the classical distances. The partitioned distances cannot increase under quantum operations of certain kind including bistochastic maps. All the basic properties are re-formulated as majorization relations. Possible applications to quantum information processing are briefly discussed.Comment: 8 pages, no figures. Significant changes are made. New section on majorization is added. Theorem 4.1 is extended. The bibliography is enlarged

    On Quantum Capacity of Compound Channels

    Full text link
    In this paper we address the issue of universal or robust communication over quantum channels. Specifically, we consider memoryless communication scenario with channel uncertainty which is an analog of compound channel in classical information theory. We determine the quantum capacity of finite compound channels and arbitrary compound channels with informed decoder. Our approach in the finite case is based on the observation that perfect channel knowledge at the decoder does not increase the capacity of finite quantum compound channels. As a consequence we obtain coding theorem for finite quantum averaged channels, the simplest class of channels with long-term memory. The extension of these results to quantum compound channels with uninformed encoder and decoder, and infinitely many constituents remains an open problem.Comment: 16 pages, no figure
    corecore